Al-Farabi Kazakh National University Faculty of Theoretical and Nuclear Physics Department of Theoretical and Nuclear Physics #### EDUCATIONAL-METHODICAL COMPLEX OF DISCIPLINE VTS 5303 "Introduction to the theory of supersymmetry" Specialty "6M060400 - Physics" Educational program " 6M060401 - Theoretical Physics " Course - 1 Semester - 1Number of credits - 3 | Educational-methodical complex of the discipline is made by <u>Takibayev Nurgali</u> <u>Zhabagaevich, d.s.pm., academic of NAS RK, professor</u> (name, surname, scientific degree, academic rank) | |--| | Based on the working curriculum on the specialty "6M060400 - Physics" | | | | Considered and recommended at the meeting of the department <u>of Theoretical</u> and Nuclear Physics | | from «_05_»09 2017 year, protocol № 2 Head of department Abishev M.Y. (Signature) | | Recommended by methodical bureau of the faculty «06»09 2017 year, protocol № 1 | | Chairman of the method bureau of the faculty Gabdullina A.T. (Signature) | ### Al-Farabi Kazakh National University Faculty of Physics and Technology Chair of Theoretical and Nuclear Physics ### Syllabus Autumn semester, 2017-2018 academic year ## Academic course information | Discipline's code | Discipline's title | Type | No. of hours per week | | | Number of | ECTS | |---------------------|--|---------|-----------------------|-----------|-------|-----------|------| | 5303 VTS | Introduction to | | Lect. | Pract. | Lab. | credits | | | | the theory of | Basic | 2 | 1 | 0 | 3 | 5 | | Lecturer | supersymmetry | | | | | | | | Decitarer | TakibayevN.Zh., d.s.pm., academic of NAS RK, professor | | | ic Office | hours | Scheduled | | | e-mail | E-mail: takibayev@gma | | .com | - | | | | | Telephone
number | Telephone: 29 | 25-133; | 8-777-70 | 4- Audito | ory | 31 | 9 | | Academic | Type of course (theoretical, practical; basic, elective) and its purpose (role and | |-----------------|---| | presentation of | place of the course in the educational program): Theoretical Nuclear Physics. | | the course | The aim of the course: to give the students the deep understanding of the | | | modern physics of nucleus of stoms and quant | | | modern physics of nucleus of atoms and quantum mechanics of many-particles systems and self study to form a custom of | | | systems and self study, to form a system of competences in the context of qualification requirements: * | | | A) cognitive: be able to – demonstrate acquired knowledge (specifically) and it | | | understanding; - demonstrate an understanding of the overall structure of the | | | study field and the relations between its elements (specifically). | | | B) functional: be able to - include new knowledge in the context of has | | | knowledge, interpret its contents; - analyze educational situation and off | | | direction to solve it; - use methods (research, calculation, analysis, etc.) inhere | | | to the field of study (specifically) individually or in a group teaching an | | | research activities; ** | | | C) systemic: be able to - synthesize, interpret and evaluate the learning outcom | | | of discipline, modules, midterm exam content (specifically); make an analysis | | | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | | | | | 1000 | constructiveeducationalandsocialinteractionandcooperationinthegroup; - propo | | | to consider a problem, to reason its importance; - accept criticism and criticize; - work in a team; | | 1 1 | E) metacompetences: be able to - recognize the role of taken course in the | | 100 | implementation of individual learning path | | | *Thesystemofdescriptorverbsmustbeusedduringtheformationofcompetences | | | (Look in Application 2) **Active and interactive methods is recommended | | | ensure deeper understanding and learning of educational material and to achieve | | | learning out comes of the course (individual research | | | learning out comes of the course (individual researches, group projects, cas studies and other methods). | | | | | / | Mathematical analysis, the theory of functions of complex variables, differential | | | equations, mathematical physics, statistical physics, physics of elementary | | | particles. | |--|---| | Post requisites | Actual problems of physics and ecology, trends in the development technology and environmental problems, Problems of energy and problems of energy and environmental problems. | | Information | nanotechnologies, Modern problems of space ecology and physics. | | resources | M. Kaku: Introduction to superstrings and M- Theory, Springer, 624 (1999). J. Wess, J. Bagger: Supersymmetry and Supergravity, Princeton University Press (1992). E. Witten, "Constraints on supersymmetry breaking", Nucl. Phys. B202, 253(1982). S.P. Martin, "A supersymmetry princed A.V. Legal of Constraints on Supersymmetry Princed A.V. | | | A. Bilal, "Introduction to Supersymmetry", ArXiv:hep-th/9612114. A. Bilal, "Introduction to Supersymmetry", ArXiv:hep-th/0101055. D.I. Kazakov, "Supersymmetric expansion of the Standard model of fundamental interactions", the works of the summer school of the "Dynasty" foundation "Physics of fundamental interactions", (2006). M. Shifman, A. Vainshtein, "Instantons Versus Supersummetry: Fifteen years later,"ArXiv:hep-th/9902018. Internet-resources: | | | 1. Krasnikov N V, Matveev V A hep-ph/9703204 2. Y.A. Golfand, E.P. Likhtman, JETP Lett. 13 452 (1971) 3. Volkov D V, Akulov V P Phys. Lett. B 46 109 (1973) 4. Wess J, Zumino B Nucl. Phys. B 70 39(1974) | | Academic | readeful Denavior Rules. | | policy of the course in the context of university moral and ethical values | Compulsory attendance in the classroom, the impermissibility of late attendance. Without advance notice of absence and undue tardiness to the teacher is estimated at 0 points. Academic values: Inadmissibility of plagiarism, forgery, cheating at all stages of the knowledge control, and disrespectful attitude towards teachers. (The code of KazNU Student's honor) | | Evaluation and
ttestation
olicy | Criteria-based evaluation: Assessment of learning outcomes in correlation withdescriptors (verification of competence formation during midterm control andexaminations). Summative evaluation: evaluation of the presence and activity of the work in the classroom; assessment of the assignment, independent work of students, (project / case study / program /) | # Calendar (schedule) the implementation of the course content: | Wee
ks | Topic title (lectures, practical classes, Independent work of students) | Number
of hours | Maximum
score | |-----------|---|--------------------|------------------| | | Module 1 | | | | 1 | Lecture-1 (L-1). Continuous integrals and point particles. | 2 | - | | | Seminar -1 (S-1).Relativistic point particles. | | | | 2 | L-2. Secondary quantization. Harmonic oscillators. | 1 | | | | S-2. Currents and secondary quantization. | 2 | - | | - 1 | | | | | 3 | L-3. The strings of Nambu-Goto. | 2 | , | |----|---|---|------------------------------| | | S-3.Boson strings. | 1 | 5 | | | MSWT-1. Prepare the report: Quantization in the calibration of a light cone. | 1 | 20 | | 4 | L-4. Two-dimensional supersymmetry. | 2 | * | | | S-4. Closed strings. | 1 | .5 | | | Module 2 | | | | 5 | L-5. Supersymmetry | 2 | | | | S-5. Supersymmetric point particles. | 1 | 5 | | | MSWT-2. Prepare the report: Quantization. | 1 | 20 | | 6 | L6.Two-dimensional supersymmetry. Trees. | 2 | * | | | S6. Local two-dimensional supersymmetry. | 1 | 5 | | 7 | L7.Conformal field theory and the Kac-Moody algebra. | 2 | * | | | S7. Conformal field theory. | 1 | 5 | | | MSWT-3. Prepare the report: Superconformal field theory. | 1 | 25 | | | 1stIntermediate Control (IC1) | | 100 | | 8 | Midterm (MT) | | 100 | | 8 | L-8.Fermion vertex operator. Spinors and trees. | 2 | • | | | S-8.The Kac-Moody algebras. | 1 | 5 | | | Module 3 | | With the same of the same | | 9 | L-9. Multi-loop amplitudes and Teichmüller spaces. | 2 | | | | S-9. Unitarity. One-loop amplitudes. | | | | | 3-9. Officially, One-loop amplitudes. | 1 | 5 | | | MSWT-4. Prepare the report: Harmonic oscillators. | 1 | 5 | | 10 | | | | | 10 | MSWT-4. Prepare the report: Harmonic oscillators. | 1 | | | 10 | MSWT-4. Prepare the report: Harmonic oscillators. L-10. Field theory in the calibration of the light cone. | 2 | 10 | | | MSWT-4. Prepare the report: Harmonic oscillators. L-10. Field theory in the calibration of the light cone. S-10. Derivation of the field theory of point particles. | 1 2 1 | 10 | | | MSWT-4. Prepare the report: Harmonic oscillators. L-10. Field theory in the calibration of the light cone. S-10. Derivation of the field theory of point particles. L-11. Field theory of BRST. | 1 2 1 2 2 | 5 | | 11 | MSWT-4. Prepare the report: Harmonic oscillators. L-10. Field theory in the calibration of the light cone. S-10. Derivation of the field theory of point particles. L-11. Field theory of BRST. S-11.Covariant field string theory. MSWT-5. Prepare the report: Closed strings and | 1
2
1
2 | 5 - 5 | | 1 | MSWT-4. Prepare the report: Harmonic oscillators. L-10. Field theory in the calibration of the light cone. S-10. Derivation of the field theory of point particles. L-11. Field theory of BRST. S-11.Covariant field string theory. MSWT-5. Prepare the report: Closed strings and superstrings. | 1
2
1
2
1 | 5
-
5
10 | | 2 | MSWT-4. Prepare the report: Harmonic oscillators. L-10. Field theory in the calibration of the light cone. S-10. Derivation of the field theory of point particles. L-11. Field theory of BRST. S-11.Covariant field string theory. MSWT-5. Prepare the report: Closed strings and superstrings. L-12.Geometric field string theory. | 1
2
1
2
1
1 | 10
-
5
-
5
10 | | | MSWT-4. Prepare the report: Harmonic oscillators. L-10. Field theory in the calibration of the light cone. S-10. Derivation of the field theory of point particles. L-11. Field theory of BRST. S-11.Covariant field string theory. MSWT-5. Prepare the report: Closed strings and superstrings. L-12.Geometric field string theory. S-12String group. | 1 2 1 2 1 1 2 2 1 1 1 2 1 1 1 1 1 1 1 1 | 10
-
5
-
5
10 | | | string theory. | | | |----|--|---|-----| | 14 | L-14.Heterotic strings and compactification. | 2 | • | | | S-14.Spectrum of states. Covariant and fermion formulations. | 1 | 5 | | 15 | L-15.On the theory of supersymmetry. | 2 | • | | | S-15.Four-dimensional superstrings. | 1 | 5 | | | MSWT-7. Prepare the report: Review of the theory of supersymmetry. | 1 | 25 | | | 2ndIntermediate Control (IC2) | | 100 | | | Exam | | 100 | | | Total | | 100 | Note: Independent work of students with teacher is 7 hours for semester. 3, 5, 7, 9, 11, 13 and 15 weeksareincludedintosyllabus (assignmentsubmission) | Lecturer | (freg | TakibayevN.Zh. | |---|-------|-----------------| | Head of the Department | 0,0 | Abishev M.E. | | Chairman of the Faculty Methodical Bureau | wedgy | Gabdullina A.T. |